Splitting methods for the nonlocal Fowler equation
نویسندگان
چکیده
We consider a nonlocal scalar conservation law proposed by Andrew C. Fowler to describe the dynamics of dunes, and we develop a numerical procedure based on splitting methods to approximate its solutions. We begin by proving the convergence of the well-known Lie formula, which is an approximation of the exact solution of order one in time. We next use the split-step Fourier method to approximate the continuous problem using the fast Fourier transform and the finite difference method. Our numerical experiments confirm the theoretical results.
منابع مشابه
Application of the exact operational matrices for solving the Emden-Fowler equations, arising in Astrophysics
The objective of this paper is applying the well-known exact operational matrices (EOMs) idea for solving the Emden-Fowler equations, illustrating the superiority of EOMs over ordinary operational matrices (OOMs). Up to now, a few studies have been conducted on EOMs ; but the solved differential equations did not have high-degree nonlinearity and the reported results could not strongly show the...
متن کاملOn the instability of a nonlocal conservation law
We are interested in a nonlocal conservation law which describes the morphodynamics of sand dunes sheared by a fluid flow, recently proposed by Andrew C. Fowler and studied by [1, 2]. We prove that constant solutions of Fowler’s equation are non-linearly unstable. We also illustrate this fact using a finite difference scheme.
متن کاملA Class of Nested Iteration Schemes for Generalized Coupled Sylvester Matrix Equation
Global Krylov subspace methods are the most efficient and robust methods to solve generalized coupled Sylvester matrix equation. In this paper, we propose the nested splitting conjugate gradient process for solving this equation. This method has inner and outer iterations, which employs the generalized conjugate gradient method as an inner iteration to approximate each outer iterate, while each...
متن کاملInfinitely many solutions for a bi-nonlocal equation with sign-changing weight functions
In this paper, we investigate the existence of infinitely many solutions for a bi-nonlocal equation with sign-changing weight functions. We use some natural constraints and the Ljusternik-Schnirelman critical point theory on C1-manifolds, to prove our main results.
متن کاملNonlocal Analysis of Longitudinal Dynamic Behavior of Nanobars with Surface Energy Effect
Due to considerable stored energy in surfaces of nano-scales in comparison with the stored energy in their bulk, considering the surface energy is necessary for the analysis of various behaviors of nano-scales for more precise design and manufacturing. In this article, the longitudinal dynamic behavior of nanobars in the presence of the surface energy parameters is studied. To this end, the lon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 83 شماره
صفحات -
تاریخ انتشار 2014